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Abstract

A liquid jet issuing from a nozzle may break-up into

from apredetermind sha and thus are not really capable
of representing correctly the late stages of the jet life.
The secom approach to the jet break-up problem is the

small drops of a variety of sizes when it is subjected to everapproximation of the full Navier-Stokes equatiogsule of

minute disturbances due toetiphenomeno of capillary
instability. With the large number of parameters invdlire
the description of the jet instability, it should bk great
interest to solve the governing equations numerically.
Several attempts have been madehis direction ard are
still very active since a detailed numerical investigation of
the break-up of a viscous jet requir@ very accurate
numericaltechnique The present work proposes one such
techniqe capabé of an efficient computation of the
unknown free surface. It ithe strean tube methal which
uses a transformation of the physical domairhe
governing equations are then solved by gsian
optimisation algorithm. An expected advantage of the

a set of one dimensional jet equations which take into
accountthe characteristic features of the flow, notably the
jet slenderness as described by Yarifhe simplest
equations are thesderived by Leéf, neglecting radial
inertia and viscous effects. The spat@ie-dimensional
equations derived by Lee veesolved by Torpey using a
weighteal residual method, in which a system of non-linear
partial differential equations are reduced to a set of ordinary
differential equations. Torpey limits hisxpansio to the
two first Fourie modes andclaims fair agreement with his
experimentalresults We have shown elsewhéréhat this
level of approximation can only be justifiedr flow initial
perturbations which is not the case of industrial

methal is the easiness in introducing elaborate rheologicalapplication8. Moreover Eggers and Dupéhthawe shown

constitutive equations in ordes accoun for complex fluid
behaviour In this paper, we will give the basic features of
the strean tube method in the context of an unsteady jet
flow and present the procedureaslowing to obtain
streamlines and kinematic quantities on theifstability
problem.

Introduction

The problam of modelling the break-up of liquid jets is
a fairly old one. The first mathematical treatmentluie to
Rayleigh using linear instability theory, where he
considerd an infinite jet, and examined the temporal
behaviou of an axially periodical disturbance. This is not
strictly the problem issuing from a nozzle, whiwas first
considered by Keller et 4l Satellite formation is not
predicted by the linear theory. Following this linear
analysis there have been essentiditee approachgto the

that inviscid models may become inconsistent imoager
before break-up occurs.

Finally the last modelling approach tiee problem of
jet instability is the direct numerical solution of the Navier-
Stokes equations. The first attempt was done by Shokoohi
who usea a vorticity-stream function formulation to track
the fluid surface. The computations were limited to low
Reynolds numbers by numericstability constraintsand
also by computer time requirements. Mansoand
Lundgred? used a boundary integral method to study the
instability of an inviscid jet. This method &1y attractive
since it involves only information about the sudad the
fluid. Although being quite accurate boundary integral
methodsneglecteither viscous or inertial forces, both of
which become important asymptotically as emphasizae
Eggersd3. Moreover for these methods, bothe thurface
tracking and the flow computations are quite complicated
problemswhich have to be coupled appropriately. Very

problem of jet instability. The differences between these recently Ashgriz and Mashay¥k proposed a temporal
approachs consist in the accuracy by which the geometry analyss of the capillary jet break-up problem based on a

and fluid mechanics of the problem are taken into account.
First is the non-linear perturbatio analysis of
Rayleigh'sproblem which results in analytical solutions.
Analyses that fall in this category include thatvaier? and
Chaudhary ath Redekopp in which the viscosity was

Galerkin finite-element method with penalty function
formulations in order to sob/the continuity, momentum
and conservation equations. The free sarfef the jet
which is a priori unknown is determined usiagspecial
method developed by é¢rauthord>. This work is probably

neglected. Moreover perturbation analyses assume that théhe most extensive study of jet break-up to date.

free surfa@ shape, while unknown deviates only slightly
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In this paper, our aim is to propose a robust numerical For the axisymmetric flow which is under study, the
methal which is able to deal with the highly non-linear velocity vector can be written as:
problem of spatial jet instability which may lead to rather N N N
intricate free surface shapes. This method should also be -
versatie enoudn to model accurately different initial and/or v =ulrzherswir.zhe, )
boundary conditions such as non-sinusoidal perturbdfions using cylindrical co-ordinates. FollowgnClermont’, we
can write the stream function at the section of reference as:
Features of the Stream Tube Method

r
The basic elements of the streametubethal have (/’(r’zb ’t): _.[fw(é’zb ’t) dg (4)
been discussed in an exhaustive manner elselWhand 0
therefore only the main featwenecessyr for the The reference sectiom, allows to construca mapped
understandig of the results given hereinafter will be gyp-domain for which the maximum radius Rb
presented in this sub-section. corresponding to that of the free surface4e z,. Let us

In the case of maxisymmetrc problem the stream  ow take
tube method defines a transformatifunction f which

allows a physical domain D to be mapped into a simpler ¢*(Rt) — —go(l’ z t) (5)
domah D* where the streamlines are parallel straight lines. ’ b
This function f is an unknown of the problem to be solved The derivation operators which cemfrom the

in the new domain which is geometricaltyuch simple' as  equations defining the function f can be written:
shown below in figure 1. s 1 s
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Following the same transformation etkielocities are

of the form:
PHYS CAL DOMAIN D Mapped .
= R)
(,ZL ffy ORT * ®)
1 o (,-
W= ——— Rt
rr 5R(¢( )) (9)

MAPFED DOMAIN D'
In order to simplify let us take:

Figure 1. Representation of physical and mapped domains S

7RO=2='RY) o

In the ca® of the jet, as also shown in figure 1, the
domain is sub-divided into sub-domains Di involyia

A D from where we obtain:
one-to-one local transformation for obtaining the mapped

sub-domain Di*. For every sub-domain, we have: f -
_ —_Z ¥
r=f(R,Z) (1) u= ffl;z ¢ (R’t) (11)
z=27(r,2)e Di (R, Z) e Di* 2
= =f i 1 -
A=61,26R, D=1 =0  foralli W= 3 *(R,t) w2
where . is the Jacobian fothe function f . It will be f fR
noticed that ther is necessity to consider boundary
conditionsbetween two different sub-domains. In order to Fromthe velocities at the sections of reference and the

formulaie the basic equations of the stream tube analysis mapping function, it is possible tmmpue the velocities in
reference sections are required for each sub-donmmathel  all the sub-domains of the jet as shown in figure 2. In this
problem under consideration, the reference section is that ofigure we have considered the radial velocity to be
maximum radius i.e. the swell section. negligible.
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Figure 2.Map of the velocity field in a sub-domain

Within the context of th stream-tub method it is
necessary to compute the mapgpifunction f from the
mappe domahn D* i.e. the domain of computation. Let us
assume that the axial velocity is constanéveryreference
cross-section as shown in figure This assumptia leads
to:

OW_ 0 vzvt
or

Using this relationship, we obtathe following partial
differential equation for the mapping function f.

f fF;—R[fF'ﬁf fé{l _0

This partial differential equation with unknownis
true for every sub-domain and for all times. Moreover, on
the axis of the jet we have the relationship f = 0.

We propose to choose a polynomagiproximatian of
degree three for f in the following form:

(13)

(14)

vz (Rt)=ay(Z,tRra,(Z,H)R? +a5(Z )R> +... (15)

Theo, are associated to one giveectio for ead time
t. They represent a subset of the unknowns of the problem.

Governing Equations of the Problem

As shown elsewhefethere are taleag two possible
methodgo pertub the jet. Indeed the disturbance can be in
the form of an electrohydrodynamic stimulation (radius
perturbation) or a piezoelectric excitation which leads to a
velocity pulsation. In this study, we congidedisturbance
using the latter technique which gives an excitation of the
following form:

w(r,Z' t)=w,sin (ot+¢) (16)

wherew,is the initial amplitude and the phase shift.

The velocity profile at the nozzle exit is takenke
uniform but any other type of profile can be envisaded
this investigation body forces and inertifdrces are
ignored.
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The equilibrium equations in cylindrical co-ordinates
can be written as:

50”
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and withg =— P11 +T , we obtain :
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Now we can apply thderivation operatos on each
component of the extra-stress tensor with special attention
to the points on the free surface. In the case of an inviscid
fluid, on the free surface the pressure is not an unknown
since it is defined by the following relationship:

0

=T —+—
urf ( r, I,
where T is the surface tension coefficiamd r, and [ are
the usualradii taken into account for the calculation of the
surface tensidh

By applying tle derivation operate on r, and we
obtain:

P

[ (19)

T
Psurt = ?

Finally to summarise, the equilibrium equatiarsthe
free surface are:

(20)

T ) 1 §Trr I5Trz fz §Trz ITrr_THH -0
f2 fg SR 6Z fg oR  f 1)
l 5TFZ | 5TZZ fzI 5TZZ ITrz —
fr OR 6Z fg 6R f
and for the points within the jet we have:
_16P 16T, 6Ty £,0T; Ti—Top
foOR fn OR 6Z f, 6R  f (22)
fz 6P _6P 10T, 0Ty ;0T Tz
foOR 0Z fn 6R 6Z fy 6R f

For a viscous jet there iw differene betwea free
surface and interior points.

As stated earlier in the numerical featuréshe stream
tube method the jet is partitioned into sub-domains which
leads to define two compatibility equations between the
sub-domains with respect to continuity on the axial velocity
and the mapping function.

W(Ri L, )= W(Rw ZCM)

tR.Z¢ )= t(Rur Zc,,)

(23)
(24)
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At each mesh point the pressure is unknowmn an
evely crosssection the three unknowns of the analytical

The governing equations concern the interface pressurggrm of the mapping function f are to be conside(see

and can be written as:

t =an (a)
1 1
t|=T| —+— b
I-Ta] © e
t//n (c)
The components of the normal vector are:
_ . 1 f,
N =ng€g+ny & = €x— €, (26)
\/1+(le)2 \/1+<fz')2
with (a) and (b) we obtain:
(Pem, 47 m, 2 (T + —P+TZZ)nZ)2)’/2
52r
_ g q 52° (27)
= 7t .
o) or
And finally with (c) we have:
TP N,
—TIz (28)

TN+ -PAT by

With this equation the mathematical formulation of the
jet instability problem is completed.

Numerical Procedure
Mesh generation for the problem under study is an

highly non-trivial part of the overall solution procedure. It
is important to generate the most efficieneshso as to

reduce the computing time. Since we are considering th

spatial instability it is necessary tmeshthe whole jet.
Moreover we are in the ca®f highly distorted domains
where moving boundaries are involved and eéhgemains

experience successive evolutions as time advances. In th
present work, we consider an adaptative mesh i.e. there ar

few points in the early stage$ the jet ard their number

increases as time advances. The jet becomes more and more

distorted in the last stages as shown in figure 3.
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Figure 3. AdaptativéMesh
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equation 15). On the interior points, we have to write the
equilibrium equations, while for the boundary points
hawe also to take into account the interface pressure.
Finally, we are left with the sub-domai boundary
conditions (continuity of axial velocity and mapping
function) This leads to an over-determined system of
equations which we sadvusing the Levenberg-Marquardt
optimisation algorithm For our preliminary numerical
experiments, we have chosen to work vatiout500 mesh
points.The numerical code is implemented on a Pentium Il
micro-compute with double precision variables. At this
time, the numericé simulations are carried out on the low
initial perturbation regimifor a fluid of viscosity similar to
that of an ink and for Reynolds and Weber numieepsal

to that found in industrial ink-jet printin@ypical runsare

of the order of 6 hours CPU time. Axpecte we find
resultsclose to linear perturbation analyses as given by
Chaudhary and RedekoppThis helps to show that the
controlling parameterdiave been appropriately taken into
account.

Concluding Remarks

In this paper, a numerical method based on the stream
tube analysis has been developed to investigatbriak-
up of an unsteady Newtonian jeBome distinguishing
features of the stream tube formulation, mairtlye
transformationof streamlines into parallel lines in the
mapped domain are shown to be of hielcharacterising
the intricate free surface shapes iajtt break-yp problem.
The possibility of computing stresses awelocity fields
within the jet by use of an adaptative mesh is also to be
underlined.

Although the methal presented in this paper is applied
to Newtonian fluids, the elements given in this paper may
be readily generalised for other fluids with complicated

éheological behaviour.

This work is only in its initial stages since we have
only considered the low initial perturbatioegime Results
on the high initial perturbation regime are needed for full
alidation of the numerical simulations. We expect also in
e near future to extend this method to the proldedrop
on demand printing.
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